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Abstract

The exact mechanisms leading to alternative splice site selection are still poorly understood. However, recently cotransfection studies
Ž .in eukaryotic cells were successfully used to decipher contributions of RNA elements cis-factors , their interacting protein components

Ž .trans-factors or the cell type to alternative pre-mRNA splicing. Splice factors often work in a concentration dependent manner, resulting
in a gradual change of alternative splicing patterns of a minigene when the amount of a trans-acting protein is increased by

Ž .cotransfections. Here, we give a detailed description of this technique that allows analysis of large gene fragments up to 10–12 kb under
in vivo condition. Furthermore, we provide a summary of 44 genes currently investigated to demonstrate the general feasibility of this
technique. q 1999 Elsevier Science B.V. All rights reserved.
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1. Type of research

Ø A general method to create minigenes suitable for in
vivo splicing experiments.
Ž . Ž .Ø Co -Transfection assay to determine the alternative
splicing pattern of a given minigene.

Ø RT-PCR conditions to analyze specific minigenes.

2. Time required

Ø Generation of the minigene: 1 month.
Ø Cotransfection and RT-PCR analysis: 3 days.

3. Materials

3.1. Construction of minigenes

ŽØ Subcloned genomic DNA fragment in bacterial, or
.yeast artificial chromosome or in lambda phage .

) Corresponding author. Fax: q49-89-8578-3749; E-mail:
stamm@pop1.biochem.mpg.de; www.neuro.mpg.derstamm.htm

Ø PCR primers.
Ø Long-range PCR reagents: e.g., SAWADY Long PCR

Ž .System Peqlab Biotechnologie, Erlangen, Germany .
Ø 10= Long-range PCR buffer: 500 mM Tris–HCl pH

Ž .9.1, 150 mM NH SO , 20% DMSO, 1% Tween-204 2 4

Ø 25 mM MgCl solution2

Ø 10 mM dNTP mix
Ž .Ø pCR XL TOPO cloning kit Invitrogen, Carlsbad, USA

Ž .Ø pcDNA1.1 Invitrogen or any other suitable eukaryotic
expression vector

3.2. Transfection of cells

Ž . ŽØ Six-well tissue culture plate 35 mm Falcon, Becton
. ŽDickinson Labware, NJ, USA , HEK293 cells ATCC,

.Manassas, VA, USA , Dulbecco’s modified Eagle
medium with glutamax, supplemented with 10% fetal

Žcalf serum GIBCO BRL Life Technologies, Eggen-
.stein, Germany .

Ø Vortex mixer.
ŽØ 1 M CaCl solution Dissolve 5.4 g CaCl P6H O in2 2 2

.20 ml H O, sterilize by filtration, store at y208C .2

1385-299Xr99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
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Ž Ž .Ø 2= HBS Dissolve 1.6 g NaCl 280 mM , 0.074 g KCl
Ž . Ž .10 mM , 0.027 g Na HPO P2H O 1.5 mM , 0.2 g2 4 2

Ž . Ž .dextrose 12 mM and 1 g HEPES 50 mM in 90 ml
H O. Adjust pH to 7.05 with NaOH, then bring up to a2

total volume of 100 ml with H O. Sterilize by filtra-2
.tion, store at y208C .

Ø 5% CO incubator.2

Ø 3% CO incubator.2

3.3. RT-PCR

ŽØ 10 mM dNTPs Pharmacia-Biotech Europe, Freiburg,
.Germany .

ŽØ Taq polymerase, 5 Urml Applied Biosystems-Perkin
.Elmer, Weiterstadt, Germany .

Ž .Ø Thermocycler Biometra, Gottingen, Germany .¨
Ž .Ø 5= RT buffer: 250 mM Tris–HCl pH 8.3 , 200 mM

KCl, 20 mM MgCl .2
ŽØ RNase inhibitor 50 Urml Boehringer, Mannheim, Ger-

.many .
y ŽØ H reverse transcriptase, 200 Urml GIBCO BRL Life

.Technologies .
Ž .Ø 100 mM DTT 1.4 dithiothreitol .

Ø 10= PCR buffer, 100 mM Tris–HCl, pH 8.3; 500 mM
Ž . ŽKCl, 15 mM MgCl ; 0.01% wrw gelatin Applied2

.Biosystems-Perkin Elmer .
Ø Primer sequences for amplification: TAATACGACT-

Ž .CACTATAGGG X16-T7 , CCTGGTCGACACTCTA-
Ž .GATTTCCTTTCATTTGACC X16-r GTTTTCTC-

Ž .CTCCGAGCCGCTCCGA E1A-f .
Ž .Ø CTCAGGCTCAGGTTCAGACACAGG E1A-r .

Ž .Ø Agarose GIBCO BRL Life Technologies .
Ž Ž .Ø 1= TBE 10.8 g Tris base 89 mM , 2.1 g boric acid

Ž . Ž . .89 mM , 4 g 0.5 M EDTA 2 mM , in 1 l .

4. Detailed procedure

An overview of the complete procedure is shown in
Fig. 1.

4.1. Construction of the minigenes

Ø A minigene is best constructed from genomic subclones
in lambda phages or artificial chromosome systems.
The genomic clones containing the alternatively spliced

Ž .exon s together with the flanking constitutive exons
are verified by Southern Blot hybridization using stan-

w xdard procedures 58 . If no suitable genomic clones are
available, genomic DNA prepared by standard proce-

w xdures 58 can be used as a template for PCR amplifica-
tion. However, the PCR amplification from genomic
DNA is often more difficult. Restriction site mapping is
performed directly with the PCR product or with the
genomic clones to identify absent restriction sites.

Ø Restriction sites absent from the PCR fragment or the
genomic clones can be used to clone the minigene by
introducing them into the PCR primers. They should be

X Ž .placed in the most 5 part of the primer Fig. 1A . The
part of the primers complementary to the genomic clone
should have an annealing temperature between 62 and
658C to ensure specificity of the reaction. The calcula-
tion of annealing temperatures can be performed under
http:rrmbcf.dfci.harvard.edurdocsroligocalc.html.

Ø Long-range PCR amplification is performed according
Žto the protocol supplied by the manufacturer SAWADY
.Long PCR System, Peqlab Biotechnologie . For target

sizes less than 30 kb, the following reaction setup can
be used: 36.5 ml H O, 5 ml 10= long-range PCR2

buffer, 2.5 ml 10 mM dNTPs, 4.5 ml 25 mM MgCl , 12
Ž .ml template DNA 10 pgrml , 0.5 ml of a mixture of

Taq and a high fidelity thermostable polymerase with
proofreading activity. Assemble the reactions on ice
and perform the amplification using the following ther-
mocycler settings: Initial denaturation for 2 min at
938C; 10 cycles with 10 s denaturation at 938C, exten-

Ž .sion at 688C allow 30 to 60 s extension per 1 kb ; 15 to
20 cycles with 10 s denaturation at 938C, 30 s annealing
at 658C, extension at 688C. Increase the extension time
Ž .30 to 60 s per 1 kb for 20 s every cycle to compensate
for enzyme inactivation; final extension for 7 min at
688C. Analyze 5 to 10 ml from the PCR reaction on a
0.8% agarose gel.

Ø The gel purification and cloning of the PCR product
Ž .into the pCR-XL-TOPO vector Invitrogen is per-

formed according to the manufacturer’s protocol with
the following modification: mix the cloning reaction by
adding 0.5 ml pCR-XL-TOPO vector to 2 ml of the gel
purified PCR product. After incubation for 5 min at
room temperature, use the entire reaction for bacterial
transformation.

Ø Finally, the minigene is recloned from the pCR-XL-
TOPO vector into an eukaryotic expression vector, e.g.,
w x49 using the unique restriction sites introduced by the

w xPCR primers. We found that SV40 promotors 63 or
w xCMV promotors 53 work well for minigene analysis

in many cell lines.

4.2. Transfection of cells

Ø Transient transfection of adherent HEK293 cells is
w xperformed using the calcium phosphate method 11 on

Ž .35-mm plates six-well tissue culture plate . The day
before transfection 3.0=105 cellsrplate are seeded in
3 ml DMEMr10% FCS. This leads to approximately
40%–60% confluency on the day of transfection. After
splitting, the cells are incubated at 378C in 5% CO for2

17–24 h.
Ø Splicing assays are based on the titration of increasing

amounts of plasmid DNA expressing a splicing factor
to a constant concentration of minigene DNA. To avoid



( )O. Stoss et al.rBrain Research Protocols 4 1999 383–394 385

Ž . Ž .Fig. 1. Overview of in vivo splicing analysis with the minigene approach. A Using long-range PCR, the alternatively spliced exon black circle and its
Ž . Ž .flanking constitutive exons striped circles , as well as intergenic regions open circles are amplified from a genomic DNA clone. The restriction sites

Ž .introduced by the PCR primers are indicated with a star and a box. B After subcloning into a suitable TOPO vector, the minigene is recloned into an
Ž .eukaryotic expression vector using the unique restriction sites introduced by PCR star and box . The eukaryotic promoter is indicated by a thick arrow.

Exons are shown as boxes, introns as lines. After transfection, the resulting RNA is analyzed by RT-PCR using an antisense primer against the downstream
Ž . Ž . Ž .flanking exon open arrow and a sense primer against a vector-derived sequence closed arrow . C The minigene can be cotransfected with putative

Ž .splicing factors to test putitative trans-acting factors or it can be transfected into different cell types to analyze them for their splicing ability. D The
resulting PCR products can be discriminated by size or hybridization pattern, due to the presence or absence of the alternatively spliced exon.

‘‘squelching’’ effects, the ‘empty’ parental expression
plasmid containing the promotor is added to ensure a

Ž .constant amount of transfected DNA Fig. 2A, top .
Ø The standard assay employs five reactions, each con-

taining 2 mg of minigene DNA and an increasing
amount of plasmid DNA expressing a splicing factor. 0,
0.5, 1, 1.5 and 2 mg of splicing factor DNA is a good
start point for this titration. The appropriate amount of

Ž .empty vector 2, 0.5, 1, 1.5 and 0 mg is added to
ensure that equal amounts of DNA are transfected. The
DNA solutions are brought to a total volume of 75 ml
with water and 25 ml 1 M CaCl are added. While2

mixing the DNArCaCl solution with a vortex, 100 ml2

of 2= HBS is added dropwise.

Ø The mixture is incubated for 10–20 min at room tem-
perature to allow the calcium phosphate-DNA precipi-
tate to form.

Ø The precipitates are resuspended by pipetting and the
complete mixture is added dropwise to the cultured
cells.

Ø The dishes are incubated at 378C in 3% CO overnight.2

Ø After the incubation, a fine precipitate is visible on the
cells. The transfection efficiency can be estimated by
fluorescence microscopy if an EGFP-tagged construct is
used and should be at least 50% with HEK293 cells. If
the splicing factor itself is not EGFP tagged, the use of

Ž .pEGFP-C2 Clontech, Heidelberg, Germany as an
‘empty’ vector can help to monitor the transfection.
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Ž . w xFig. 2. Example of a minigene analysis. A Change of the splicing pattern of the SRp20 minigene 32 by titrating the SR-protein kinase CLK2. Top —
Transfection scheme: The amount of transfected DNA is indicated in mg. The concentration of the splicing factor CLK2 is increased by adding 0, 1, 2, 3, 4
and 5 mg of its expression plasmid pEGFP-Clk2. The total amount of transfected DNA was kept constant by adding empty vector pEGFP-C2. A total of 2
mg of the minigene was added in each reaction. Bottom — Agarose gel of the PCR products generated by RT-PCR. The structure of the reaction products
is shown on the right. Overexpression of Clk2 repressed inclusion of exon 4. C: PCR control using RNA without reverse transcription. Right — Schematic
representation of the SRp20 minigene structure. Exon 4 is alternatively spliced. Small arrows indicate the position of the primers used for PCR

Ž . w xamplification, the large arrow represent the CMV promoter. B Change of the splicing pattern of the E1A minigene 53 by overexpressing the SR-protein
kinase CLK2 and its catalyticly inactive form CLK2-KR. The structure of the E1A minigene and the splicing patterns that create the 13, 12, 10 and 9S
splice variants is shown on the right. The location of the gene specific and vector specific primers is indicated with arrows. pClk2, but not pClk2KR and

Ž .expression vector alone pcDNA represses usage of the 12 and 13 S RNA, which is most likely achieved by phosphorylation of splicing components.
w xpClk2KR slightly increases the formation of the 10S and 9S band, which could be a result of splicing component sequestration 52,53 . C: PCR control

using RNA without reverse transcription. The star indicates an unspliced band.

4.3. RT-PCR analysis

Ø RNA is isolated 17–24 h after transfection using an
Ž .RNeasy mini kit Qiagen, Hilden, Germany following

the manufacturer’s instructions. RNA is eluted in 40 ml
RNAse free H O.2

Ø Best results are achieved when reverse transcription and
following PCR are performed immediately after the
RNA purification, thus avoiding freezing of the RNA or
reverse transcription reaction.

Ø For reverse transcription, 2 ml of isolated RNA are
mixed with 5 pmol antisense minigene specific primer
in 0.5 ml H O, 2 ml 5= RT buffer, 1 ml 100 mM2

DTT, 1 ml 10 mM dNTP, 3 ml H 0, 0.25 ml RNase2

inhibitor and 0.25 ml Hy reverse transcriptase. In one
sample, the RNA is substituted with water as a control.
After a brief centrifugation, the tubes are incubated for
45 min in a 428C water bath.

Ø During this incubation period, the PCR mixture is
prepared. It consists of 50 pmol of sense and antisense
primer each, 100 ml 10= PCR buffer, 20 ml 10 mM
dNTPs in a total of 1000 ml water. The optimal MgCl2

concentration for amplification has to be determined
empirically in trial experiments and is usually in a
range of 1.5–3.0 mM final.

Ø For six reactions, 1 ml Taq polymerase is added to 300
ml PCR mixture. 2 ml of the RT reaction are added to
50 ml of this mix and PCR is performed.
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Fig. 3.
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Fig. 3.
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Fig. 3.
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Ø The PCR program must be optimized for each minigene
in trial experiments as we found that often identical
programs show variations of amplification products

w xwhen different thermocycler models are used 64 . Us-
ing the biometra trio thermoblock 050–000, we apply
the following program for the X16 minigene: Initial
denaturation for 2 min at 948C; 30 cycles: 30 s denatu-
ration at 948C, annealing at 558C for 1 min, extension
at 728C for 1 min, after 30 cycles a final extension at
728C for 20 min and cooling to 48C. For the E1A

w xminigene, we use the following touchdown 21 pro-
gram: Initial denaturation for 2 min at 948C; 20 cycles:
30 s denaturation at 948C, annealing at 658C for 1 min,
a 0.58C decrease of the annealing temperature in each
cycle, extension at 728C for 2 min, after 20 cycles 10
more cycles with 30 s denaturation at 948C, annealing
at 558C for 1 min, extension at 728C for 2 min, final
extension at 728C for 20 min and cooling to 48C. Both
these programs can be used as starting points when
optimizing a new reaction.

Ø The PCR reaction products are analyzed on a 0.3- to
0.4-cm-thick 2% agarose TBE gel.

5. Results

The results of two typical splicing assays are shown in
Fig. 2 using the CDC2 like kinase CLK2 as an example of

w x w xa trans-factor that acts on the SRp20 32 and E1A 7
minigenes. The CLK2 protein has been shown to phospho-

w xrylate splicing factors 52 . Fig. 2A shows a titration
w xexperiment using the SRp20 minigene system 32 . Here,

an increase of pEGFP-CLK2 concentration leads to skip-
ping of exon 4. Fig. 2B shows the comparison of three
factors at a constant concentration in the E1A minigene

w xsystem 53 . Here, CLK2 overexpression inhibits formation
of the 13 and 12 S splice variant. In contrast, the catalytic

w xmutant CLK2 KR that lacks kinase activity 52 and empty
pcDNA vector have no effect on the 13 and 12 S variants.

6. Discussion

This technique, summarized in Fig. 1, has been applied
for the analysis of several genes listed in Fig. 3. In

comparison to a biochemical analysis, the major advan-
tages of analyzing splicing patterns with minigenes in vivo
are: that the length of the analyzed minigene is not limit-
ing, that a large number of cell types can be analyzed and
that the analysis is based on the in vivo situation. In
addition, indirect effects, such as phosphorylation or cellu-

w xlar differentiation, e.g., Refs. 4,14,15,23,26,47,60 can be
addressed. Several parameters can be changed to analyze
factors that affect alternative exon recognition. Firstly, the
cell type used for transfection can be changed, e.g.,
tropomyosin minigenes have been transfected in muscle

w xand nonmuscle cells 4,22,23,26,27,60 and clathrin light
chain B minigenes were transfected into primary neuronal

w xcultures, as well as nonneuronal cells 63 . In both cases,
the splicing pattern of the minigenes reflected the exon
usage observed for the endogenous genes in the appropri-
ate cell system and allowed the analysis of regulatory
factors.

Secondly, parts of the minigene can be changed by
site-directed mutagenesis. Often, alternative exons are sur-
rounded by weak splice sites and their improvement leads

w xthen to a constitutive exon usage 5,65 . Another parameter
that is often analyzed by mutagenesis of minigenes are
splicing enhancers or silencers.

Finally, minigenes can be cotransfected with putative
alternative splicing factors to identify possible trans-acting
factors. This can be used to verify in vitro data collected in

w xbiochemical systems 7 , to analyze genes that do not show
w xsplicing activity in vitro 63 , or to analyze systems such as

differentiated neurons where biochemical systems are diffi-
cult to apply.

6.1. Troubleshooting

6.1.1. Transfection efficiency
The most crucial parameter for the success of an in vivo

splicing experiment is the transfection efficiency, espe-
cially when cotransfections with putative trans-acting fac-
tors are performed. We therefore usually employ EGFP-
tagged cDNA in cotransfection experiments that allow an
easy monitoring of the transfection efficiency that can
reach 90% with HEK293 cells. Reasons for lower efficien-
cies are usually dense seeding of cells, a high passage
number of cells or a deviation of the pH of the transfection

Fig. 3. Summary of minigenes that have been used to analyze alternative splicing patterns in vivo. The structures of the various genes are schematically
Ž .indicated, however, the drawings are not to scale. The various genes are sorted according to their splicing mechanism A–H . Stimulatory effects of

Ž . Ž .trans-acting factors binding to exonic splicing enhancers ESE or intronic enhancers ISE are indicated by an upward triangle marked with a ‘‘q’’. An
Ž . Ž .inhibitory effect by trans-acting factors binding to exonic ESS or intronic ISS splicing silencers is indicated with a downward triangle marked with a

‘‘y’’. S: splicing is regulated by a secondary structure, DE: splicing is developmentally regulated. A: alternative polyadenylation site, dsx: double sex
repeat, dcs: downstream control sequence, icr: intronic control region, MSE: muscle specific splicing enhancer, PTB: polypyrimidine tract binding protein
binding site. The tip of the triangle points towards the resulting splicing pattern. cis-Elements containing identical sequence elements are marked by the
same color. Identified tissue specific trans-acting factors are shown on top or bottom of the minigenes, depending on the stimulatory or inhibitory effect,
respectively. When a direct correlation between binding of a splicing factor to a cis-element and a change of splicing patterns has been demonstrated,
cis-elements and trans-acting factors are shown in the same color. An updated collection is available at www.neuro.mpg.derstamm.htm.
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solution caused by not transfecting in a 3% CO atmo-2

sphere.

6.1.2. Reproducibility
In vivo splicing assays are generally well reproducible

when several parameters are kept constant. For transfec-
tion, cells should be always plated at the same density. It is
also important to keep the time between seeding and
transfection, as well as the actual transfection time con-
stant.

6.1.3. Autoregulation
Several splicing factors seem to autoregulate their ex-

w xpression levels, e.g., Ref. 32 . This can result in a substitu-
tion of the endogenous protein by the transfected cDNA,
which means that the concentration of this splicing factor
will not be dramatically changed. The autoregulation needs
some time to occur and if observed, the time between
transfection and cell harvesting can be shortened. There-
fore, it is best to perform the analysis in transient transfec-
tion systems.

6.1.4. Contamination
As with all PCR-based methods, DNA contaminations

are a major problem. It is therefore advisable to make
aliquoted stocks of all solutions and if possible to separate
the PCR setup form the DNA analysis.

6.1.5. Heterodimers
Often, the simultaneous generation of two PCR prod-

ucts that differ only in the presence or absence of short
exonic sequences results in the formation of a heterodu-
plex that consists of two DNA strands differing by this

w xexonic sequence 78 . The heteroduplex usually migrates
Ž w x.as a third PCR product e.g., Ref. 62 . In our hands,

heteroduplex formation increases when the reaction prod-
ucts are stored for longer time and if too many cycles in
the PCR amplification are used. These parameters should
therefore be minimized.

6.2. AlternatiÕe methods

Most cis- and trans-acting elements governing alterna-
tive splicing were identified using biochemical methods
that employ a cell-free nuclear extract and radioactively

w xlabeled in vitro synthesized pre-mRNA 39 . Although this
approach allows the analysis of direct protein RNA inter-
actions, it has several limitations. So far, nuclear extracts
functional in pre-mRNA splicing have only been made
from transformed cell lines, almost exclusively fibroblasts,
which complicates analysis of, e.g., alternative splicing in
adult neurons. Furthermore, synthesis and analysis of in
vitro transcribed pre-mRNA is limited to small RNA

Ž .molecules -600 nt , which is smaller than the size of

introns flanking most alternatively spliced exons. Finally,
there is increasing evidence that pre-mRNA splicing, tran-
scription and polyadenylation are coupled processes
w x16,44,53,54 . The interdependence of these processes can
only be addressed by studying intact cells.

So far, most alternative exons studied by the in vivo
minigene approach were alternatively spliced cassette ex-
ons that can be analyzed easily by RT-PCR due to the
different size of their PCR products. Another common
alternative splicing mechanism are mutually exclusive ex-

Ž .ons see Fig. 3C . Most often, the mutually exclusive
exons are similar in size, making their PCR products
indistinguishable by their length. In these cases, the prod-
ucts can be identified with exon-specific restriction sites or
by Southern blotting employing exon specific probes.
Sometimes, alternative mRNAs are produced by the usage
of different polyadenylation sites. Here, the downstream
sequences are different, prohibiting the RT-PCR analysis
used for cassette exons. It is possible, however, to use
Ž .T G primers in RT-PCR to analyze these splicing events.n

Most minigenes are analyzed by RT-PCR as described
here. However, different methods, such as RNAse protec-

w xtion analysis 67 , or a functional assay, where a selection
w xmaker depends on the splicing pattern 12 have been

employed as well.

7. Quick procedure

Ø Construct or obtain a minigene containing the desired
alternative exon flanked by constitutive exons.

Ø Transfect this minigene alone, or together with varying
amounts of cDNA expressing splicing factors into cells.

Ø Analyze the resulting RNA by RT-PCR.

8. Essential literature references

w xGeneral PCR methods: Refs. 45,46 .
w xExample of minigene analysis: Refs. 7,63

9. References cited in Fig. 3

w1–3,6,8–10,13,17–20,24,25,28–31,33–38,40–
x43,48,50,51,55–57,59,61,66,68–77
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